
Table of Contents

Guides

Installation and Configuration
Spring Boot Integration
Spring petclinic
Pebble Spring Example
Basic Usage
Customize Defaults
Escaping
Extending Pebble
High Performance Techniques

Tags

autoescape
block
cache
embed
extends
filter
flush
for
from
if
import
include
macro
parallel
set
verbatim

Filters

abbreviate
abs
base64decode
base64encode
capitalize
date
default
escape
first
join
last
length
lower
numberformat
raw
replace
reverse
rsort

https://github.com/PebbleTemplates/spring-petclinic
https://github.com/PebbleTemplates/pebble-example-spring

sha256
slice
sort
split
title
trim
upper
urlencode

Functions

block
i18n
max
min
parent
range

Tests

empty
even
map
null
odd
iterable

Operators

comparisons (, , , , , ,)== != < > <= >= equals

contains ()contains

is
logic (, , ,)and or not ()

math (, , , ,)+ - / % *

others (,)| ?:

Installation and Configuration

Installation & Configuration

Installation

Pebble is hosted in the Maven Central Repository. Simply add the following dependency into your pom.
 file:xml

<dependency>
 <groupId>io.pebbletemplates</groupId>
 <artifactId>pebble</artifactId>
 <version>3.2.4</version>
</dependency>

Also, snapshots of the master branch are deployed automatically with each successful commit. Instead of
Maven Central, use the Sonatype snapshots repository at:

<url>https://oss.sonatype.org/content/repositories/snapshots</url>

You can add the repository in your pom.xml

<repositories>
 <repository>
 <id>sonatype-public</id>
 <name>Sonatype Public</name>
 <url>https://oss.sonatype.org/content/groups/public</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 </repository>
</repositories>

Set Up

If you are integrating Pebble with Spring MVC, read this guide.

You will want to begin by creating a which is responsible for coordinating the retrieval PebbleEngine

and compilation of your templates:

PebbleEngine engine = new PebbleEngine.Builder().build();

And now, with your new instance you can start compiling templates:PebbleEngine

PebbleTemplate compiledTemplate = engine.getTemplate("templateName");

Finally, simply provide your compiled template with a object and a Map of variables to get your Writer

output!

Writer writer = new StringWriter();

Map<String, Object> context = new HashMap<>();
context.put("name", "Mitchell");

compiledTemplate.evaluate(writer, context);

String output = writer.toString();

Template Loader

The will also accept a implementation as an argument. A loader is PebbleEngineBuilder Loader

responsible for finding your templates.

Pebble ships with the following loader implementations:

ClasspathLoader: Uses a classloader to search the current classpath.
FileLoader: Finds templates using a filesystem path.
ServletLoader: Uses a servlet context to find the template. This is the recommended loader for
use within an application server but is not enabled by default.
Servlet5Loader: Same as , but for Jakarta Servlet 5.0 or newer.ServletLoader

StringLoader: Considers the name of the template to be the contents of the template.
DelegatingLoader: Delegates responsibility to a collection of children loaders.
MemoryLoader: Loader that supports inheritance and doesn't require a filesystem. This is useful for
applications that retrieve templates from a database for example.

If you do not provide a custom Loader, Pebble will use an instance of the by default. DelegatingLoader

This delegating loader will use a and a behind the scenes to find your ClasspathLoader FileLoader

templates.

Pebble Engine Settings

All the settings are set during the construction of the object.PebbleEngine

Setting Description Default
cacheActive Flag to activate/desactivate template caching true

templateCache

An implementation of a ConcurrentMap cache that
the Pebble engine will use to cache compiled
templates.

Default implementation is
ConcurrentMapTemplateCache

and another implementation
based on Caffeine is available (

)CaffeineTemplateCache

tagCache
An implementation of a ConcurrentMap cache that
the Pebble engine will use for .cache tag

Default implementation is
 and ConcurrentMapTagCache

another implementation based
on Caffeine is available (

)CaffeineTagCache

defaultLocale

The default locale which will be passed to each
compiled template. The templates then use this
locale for functions such as i18n, etc. A template can
also be given a unique locale during evaluation.

Locale.getDefault()

executorService

An that allows the usage of some ExecutorService

advanced multithreading features, such as the
 tag.parallel

null

loader
An implementation of the interface which is Loader

used to find templates.

An implementation of the
 which uses DelegatingLoader

a and a ClasspathLoader

 behind the scenes.FileLoader

strictVariables

If set to true, Pebble will throw an exception if you
try to access a variable or attribute that does not exist
(or an attribute of a null variable). If set to false, your

false

template will treat non-existing variables/attributes
as null without ever skipping a beat.

methodAccessValidator | Pebble provides two implementations. NoOpMethodAccessValidator which
do nothing and BlacklistMethodAccessValidator which checks that the method being called is not
blacklisted. | | option for BlacklistMethodAccessValidator literalDecimalTreatedAsInteger

treating literal decimals as . Otherwise it is . | | | option int long false literalNumbersAsBigDecimals

for toggling to enable/disable literal numbers treated as BigDecimals | | | false greedyMatchMethod

option for toggling to enable/disable greedy matching mode for finding java method. Reduce the limit of
the parameter type, try to find other method which has compatible parameter types. | | false

 | option for limiting the size of the rendered output | |maxRenderedSize -1 (disabled)

Spring Boot Integration

Pebble Spring Boot Starter
Spring Boot starter for autoconfiguring Pebble.

Basic Usage

Add the starter dependency to your pom.xml:

spring-boot v2

<dependency>
 <groupId>io.pebbletemplates</groupId>
 <artifactId>pebble-spring-boot-starter</artifactId>
 <version>3.2.4</version>
</dependency>

Or build.gradle:

compile "io.pebbletemplates:pebble-spring-boot-starter:3.2.4"

spring-boot v1

<dependency>
 <groupId>io.pebbletemplates</groupId>
 <artifactId>pebble-legacy-spring-boot-starter</artifactId>
 <version>3.2.4</version>
</dependency>

Or build.gradle:

compile "io.pebbletemplates:pebble-legacy-spring-boot-starter:3.2.4"

This is enough for autoconfiguration to kick in. This includes:

a Loader that will pick template files ending in from dir on the classpath.peb /templates/

a PebbleEngine with default settings, configured with the previous loader
a Spring extension which offers some functionality described below
a ViewResolver that will output in text/html UTF-8

PLEASE NOTE: the starter depends on but is marked as optional, you'll spring-boot-starter-web

need to add the dependency yourself or configure Spring MVC appropriately.

Boot externalized configuration

A number of properties can be defined in Spring Boot externalized configuration, eg. application.
, starting with the prefix . See the corresponding for your starter properties pebble PebbleProperties.java

version. Notable properties are:

pebble.prefix: defines the prefix that will be prepended to the mvc view name. Defaults to
/templates/

pebble.suffix: defines the suffix that will be appended to the mvc view name. Defaults to .peb
pebble.cache: enables or disables PebbleEngine caches. Defaults to true

https://github.com/PebbleTemplates/pebble/blob/master/pebble-spring/pebble-spring-boot-starter/src/main/java/io/pebbletemplates/boot/autoconfigure/PebbleProperties.java

pebble.contentType: defines the content type that will be used to configure the ViewResolver.
Defaults to text/html
pebble.encoding: defines the text encoding that will be used to configure the ViewResolver.
Defaults to UTF-8
pebble.exposeRequestAttributes: defines whether all request attributes should be added to the
model prior to merging with the template for the ViewResolver. Defaults to false
pebble.exposeSessionAttributes: defines whether all session attributes should be added to the
model prior to merging with the template for the ViewResolver. Defaults to false
pebble.defaultLocale: defines the default locale that will be used to configure the PebbleEngine.
Defaults to null
pebble.strictVariables: enable or disable the strict variable checking in the PebbleEngine.
Defaults to false
pebble.greedyMatchMethod: enable or disable the greedy matching mode for finding java method
in the PebbleEngine. Defaults to false

Examples

There is the spring petclinic example which has been migrated to pebble

There is also a fully working example project located on which can be used as a reference. It is a github
very simple and bare-bones project designed to only portray the basics. To build the project, simply run

 and then deploy the resulting war file to a an application container.mvn install

Customizing Pebble

Pebble extensions

Extensions defined as beans will be picked up and added to the PebbleEngine automatically:

@Bean
public Extension myPebbleExtension1() {
 return new MyPebbleExtension1();
}

@Bean
public Extension myPebbleExtension2() {
 return new MyPebbleExtension2();
}

CAVEAT: Spring will not gather all the beans if they're scattered across multiple @Configuration
classes. If you use this mechanism, bundle all Extension @Beans in a single @Configuration class.

Customizing the Loader

The autoconfigurer looks for a bean named in the context. You can define a custom loader pebbleLoader

with that name and it will be used to configure the default PebbleEngine:

@Bean
public Loader<?> pebbleLoader() {
 return new MyCustomLoader();
}

PLEASE NOTE: this loader's prefix and suffix will be both overwritten when the ViewResolver is
configured. You should use the externalized configuration for changing these properties.

Customizing the PebbleEngine

https://github.com/PebbleTemplates/spring-petclinic
https://github.com/PebbleTemplates/pebble-example-spring

Likewise, you can build a custom engine and make it the default by using the bean name :pebbleEngine

@Bean
public PebbleEngine pebbleEngine() {
 return new PebbleEngine.Builder().build();
}

Customizing the MethodAccessValidator

You can provide your own MethodAccessValidator or switch to NoOpMethodAccessValidator by
providing a MethodAccessValidator Bean

@Bean
public MethodAccessValidator methodAccessValidator() {
 return new NoOpMethodAccessValidator();
}

Customizing the ViewResolver

And the same goes for the ViewResolver

@Bean
public PebbleViewResolver pebbleViewResolver() {
 return new PebbleViewResolver();
}

For reactive app

@Bean
public PebbleReactiveViewResolver pebbleReactiveViewResolver() {
 return new PebbleReactiveViewResolver(...);
}

PLEASE NOTE: you need to change the Loader's prefix and suffix to match the custom ViewResolver's
values.

Features

Access to Spring beans

Spring beans are available to the template.

{{ beans.beanName }}

Access to http request

HttpServletRequest object is available to the template.

{{ request.contextPath }}

Access to http response

HttpServletResponse is available to the template.

{{ response.contentType }}

Access to http session

HttpSession is available to the template.

{{ session.maxInactiveInterval }}

Spring extension

This extension has many functions for spring validation and the use of message bundle.

Href function

Function to automatically add the context path to a given url

Example

Message function

It achieves the same thing as the i18n function, but instead, it uses the configured spring messageSource,
typically the ResourceBundleMessageSource.

Label = {{ message('label.test') }}
Label with params = {{ message('label.test.params', 'params1', 'params2') }}

Spring validations and error messages

6 validations methods and error messages are exposed using spring BindingResult. It needs as a
parameter the form name and for a particular field, the field name.

To check if there's any error:

{{ hasErrors('formName' }}

{{ hasGlobalErrors('formName' }}

{{ hasFieldErrors('formName', 'fieldName' }}

To output any error:

{% for err in getAllErrors('formName') %}
 <p>{{ err }}</p>
{% endfor %}

{% for err in getGlobalErrors('formName') %}
 <p>{{ err }}</p>
{% endfor %}

{% for err in getFieldErrors('formName', 'fieldName') %}
 <p>{{ err }}</p>
{% endfor %}

Using Pebble for other tasks

The main role of this starter is to configure Pebble for generating MVC View results (the typical HTML).
You may define more PebbleEngine/Loader beans for other usage patterns (like generating email bodies).
Bear in mind that you should not reuse the default Loader for other Engine instances.

Basic Usage

Basic Usage

Introduction

Pebble templates can be used to generate any sort of textual output. It is typically used to generate HTML
but it can also be used to create CSS, XML, JS, etc. A template itself will contain whatever language you
are attempting to output alongside Pebble-specific features and syntax. Here is a simple example that will
generate a trivial HTML page:

<html>
 <head>
 <title>{{ websiteTitle }}</title>
 </head>
 <body>
 {{ content }}
 </body>
</html>

When you evaluate the template you will provide it with a "context" which is just a map of variables.
This context should include the two variables above, and .websiteTitle content

Set Up

You will want to begin by creating a PebbleEngine object which is responsible for compiling your
templates:

PebbleEngine engine = new PebbleEngine.Builder().build();

And now, with your new PebbleEngine instance you can start compiling templates:

PebbleTemplate compiledTemplate = engine.getTemplate("templates/home.html");

Finally, simply provide your compiled template with a java.io.Writer object and a Map of variables (the
context) to get your output!

Writer writer = new StringWriter();

Map<String, Object> context = new HashMap<>();
context.put("websiteTitle", "My First Website");
context.put("content", "My Interesting Content");

compiledTemplate.evaluate(writer, context);

String output = writer.toString();

Syntax Reference

There are two primary delimiters used within a Pebble template: and . The first set {{ ... }} {% ... %}

of delimiters will output the result of an expression. Expressions can be very simple (ex. a variable name)
or much more complex. The second set of delimiters is used to change the control flow of the template; it
can contain an if-statement, define a parent template, define a new block, etc.

Variables

You can print variables directly to the output; for example, if the context contains a variable called foo

which is a String with the value "bar" you can do the following which will output "bar".

{{ foo }}

You can use the dot (.) notation to access attributes of variables. If the attribute contains any atypical
characters, you can use the subscript notation ([]) instead.

{{ foo.bar }}
{{ foo["bar"] }}

Behind the scenes will attempt the following techniques to to access the attribute of the foo.bar bar foo

variable:

If is a Map, foo foo.get("bar")

foo.getBar()

foo.isBar()

foo.hasBar()

foo.bar()

foo.bar

Additionally, if is a List, then can be used instead of .foo foo[0] foo.get(0)

If the value of variable (or attribute) is null it will output an empty string.

Type Safety

Pebble templates are dynamically typed and any possible type safety issues won't occur until the actual
runtime evaluation of your templates. Pebble does however allow you to choose how to handle type
safety issues with the use of it's setting. By default, is set to strictVariables strictVariables false

which means that the following:

{{ foo.bar }}

will print an empty string even if the object does not actually have an attribute called . If foo bar

 is set to true, the above expression would throw an exception.strictVariables

When is set to false your expressions are also null safe. The following expression will strictVariables

print an empty string even if foo and/or bar are null:

{{ foo.bar.baz }}

The filter might come in handy for the above situations.default

Filters

Output can be further modified with the use of filters. Filters are separated from the variable using a pipe
symbol () and may have optional arguments in parentheses. Multiple filters can be chained and the |

output of one filter is applied to the next.

{{ "If life gives you lemons, eat lemons." | upper | abbreviate(13) }}

The above example will output the following:

IF LIFE GI...

Functions

Whereas filters are intended to modify existing content/variables, functions are intended to generate new
content. Similar to other programming languages, functions are invoked via their name followed by
parentheses ().()

{{ max(user.score, highscore) }}

Control Structure

Pebble provides several tags to control the flow of your template, two of the main ones being the for
loop, and statements.if

{% for article in articles %}
 <h3>{{ article.title }}</h3>
 <p>{{ article.content }}</p>
{% else %}
 <p> There are no articles. </p>
{% endfor %}

{% if category == "news" %}
 {{ news }}
{% elseif category == "sports" %}
 {{ sports }}
{% else %}
 <p>Please select a category</p>
{% endif %}

Including other Templates

The tag is used to include the rendered output of one template into another.include

<div class="sidebar">
 {% include "advertisement.html" %}
</div>

Template Inheritance

Template inheritance is the most powerful feature of Pebble. It allows templates to override sections of
their parent template. In your parent template you define "blocks" which are the sections that are allowed
to be overriden.

First let us look at an example of a parent template:

<html>
<head>
 <title>{% block title %}My Website{% endblock %}</title>
</head>
<body>
 <div id="content">
 {% block content %}{% endblock %}
 </div>
 <div id="footer">
 {% block footer %}
 Copyright 2013
 {% endblock %}
 </div>
</body>

</html>

In the above example, we have used the tag to define several sections that child templates are block
allowed to override.

A child template might look like this:

{% extends "parent.html" %}

{% block title %} Home {% endblock %}

{% block content %}
 <h1> Home </h1>
 <p> Welcome to my home page.</p>
{% endblock %}

The first line uses the tag to declare the parent template. The extends tag should be the first tag in extends
the template and there can only be one.

Evaluating the child template will produce the following output:

<html>
<head>
 <title>Home</title>
</head>
<body>
 <div id="content">
 <h1> Home </h1>
 <p> Welcome to my home page.</p>
 </div>
 <div id="footer">
 Copyright 2013
 </div>
</body>
</html>

You may have noticed that in the above example, because the child template doesn't override the footer

block, the value from the parent is used instead.

Dynamic inheritance is possible by using an expression with the tag:extends

{% extends ajax ? 'ajax.html' : 'base.html' %}

Macros

Macros are lightweight and reusable template fragments. A macro is defined via the tag:macro

{% macro input(type, name) %}
 <input type="{{ type }}" name="{{ name }}" />
{% endmacro %}

And the macro will be invoked just like a function:

{{ input("text", "name", "Mitchell") }}

Child templates will have access to macros defined in a parent template. To use macros located in a
completely different template, you can use the) tag. A macro does not have access to the main import
context; the only variables it can access are it's local arguments.

Named Arguments

Using named arguments allows you to be more explicit with the values you are passing to a filter,
function, test or macro. They also allow you to avoid specifying arguments for which you don't want to
change the default value.

{{ stringDate | date(existingFormat="yyyy-MMMM-d", format="yyyy/MMMM/d") }}

Positional arguments can be used in conjunction with named arguments but all positional arguments must
come before any named arguments:

{{ stringDate | date("yyyy/MMMM/d", existingFormat="yyyy-MMMM-d") }}

Macros are a great use case for named arguments because they also allow you to define default values for
unused arguments:

{% macro input(type="text", name, value) %}
 <input type="{{ type }}" name="{{ name }}" value="{{ value }}" />
{% endmacro %}

{{ input(name="country") }}

{# will output: <input type="text" name="country" value="" /> #}

Escaping

XSS vulnerabilites are the most common types of security vulnerabilities in web applications and in
order to avoid them you must escape potentially unsafe data before presenting it to the end user. Pebble
provides autoescaping of all such data which is enabled by default. Autoescaping can be turned off, in
which case Pebble provides an escape filter for more fine-grained manual escaping.

The following is an example of how autoescaping will escape your context variables:

{% set danger = "
" %}
{{ danger }}

{# will output:
 #}

If autoescaping is disabled you can still use the filter to aid with manual escaping:escape

{% set danger = "
" %}
{{ danger | escape }}

{# will output:
 #}

By default, the autoescaping mechanism and the escape filter assume that it is escaping within an HTML
context. You may want to use an alternate escaping strategy depending on the context:

{% set danger = "alert(...)" %}
<script>var username="{{ danger | escape(strategy="js") }}"</script>

See the for more information on how autoescaping works, how to disable it, and the escaping guide
various escaping strategies that are available.

Whitespace

The first newline after a pebble tag is automatically ignored; all other whitespace is ignored by Pebble
and will be included in the rendered output.

https://en.wikipedia.org/wiki/Cross-site_scripting

Pebble provides a whitespace control modifier to trim leading or trailing whitespace adjacent to any
pebble tag.

<p> {{- "no whitespace" -}} </p>
{# output: "<p>no whitespace</p>" #}

It is also possible to only use the modifier on one side of the tag:

<p> {{- "no leading whitespace" }} </p>
{# output: "<p>no whitespace </p>" #}

Comments

You can comment out any part of the template using the `` delimiters. These comments will not appear in
the rendered output.

{# THIS IS A COMMENT #}
{% for article in articles %}
 <h3>{{ article.title }}</h3>
 <p>{{ article.content }}</p>
{% endfor %}

Expressions

Expressions in a Pebble template are very similar to expressions found in Java.

Literals

The simplest form of expressions are literals. Literals are representations for Java types such as strings
and numbers.

"Hello World": Everything between two double or single quotes is a string. You can use a
backslash to escape quotation marks within the string.
"Hello #{who}": String interpolation is also possible using inside quotes. In this example, if #{}

the value of the variable is , then the expression will be evaluated to .who "world" "Hello world"

100 + 10l * 2.5: Integers, longs and floating point numbers are similar to their Java counterparts.
true / : Boolean values equivalent to their Java counterparts.false

null: Represents no specific value, similar to it's Java counterpart. is an alias for null.none

Collections

Both lists and maps can be created directly within the template.

["apple", "banana", "pear"]: A list of strings
{"apple":"red", "banana":"yellow", "pear":"green"}: A map of strings

The collections can contain expressions.

Math

Pebble allows you to calculate values using some basic mathematical operators. The following operators
are supported:

+: Addition
-: Subtraction
/: Division

%: Modulus
*: Multiplication

Logic

You can combine multiple expressions with the following operators:

and: Returns true if both operands are true
or: Returns true if either operand is true
not: Negates an expression
(...): Groups expressions together

Comparisons

The following comparison operators are supported in any expression: , , , , , and .== != < > >= <=

{% if user.age >= 18 %}
 ...
{% endif %}

Tests

The operator performs tests. Tests can be used to test an expression for certain qualities. The right is

operand is the name of the test:

{% if 3 is odd %}
 ...
{% endif %}

Tests can be negated by using the is not operator:

{% if name is not null %}
 ...
{% endif %}

Conditional (Ternary) Operator

The conditional operator is similar to its Java counterpart:

{{ foo ? "yes" : "no" }}

Operator Precedence

In order from highest to lowest precedence:

.

|

%, , / *

-, +
==, , , , , != > < >= <=

is, is not
and

or

Limiting the size of the rendered output

In case you’re running Pebble with templates provided by someone else, there’s an attack similar to zip
 or that might cause your process to run out of memory. To protect against it, you can bombs XML bombs

limit the size of the output when evaluating a template:

PebbleEngine pebble = new PebbleEngine.Builder()
 // Output should not exceed 10 MB.
 .maxRenderedSize(10 * 1024 * 1024)
 .build();

This will throw a when a template evaluation tries to write more characters than the PebbleException

limit you set.

IDE's plugin

If you want to add IDE's syntax highlighting, you can install this for IntelliJ. Thank you to Bastien plugin
Jansen for his contribution.

https://en.wikipedia.org/wiki/Zip_bomb
https://en.wikipedia.org/wiki/Zip_bomb
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://plugins.jetbrains.com/idea/plugin/9407-pebble

Customize Defaults
Pebble comes with a rich set of built-in tags and filters that will help you render your templates into
websites and other documents with ease. However, imagine a more specific use-case where the templates
are not entirely under your control.

In these cases it might be advised to consider stripping-down Pebbles' built-in functionality that may
otherwise introduce security-concers regarding the integrity and stability of your application.

Opt-Out using ExtensionCustomizer

The base class can be used to gain access to the default functionality before it is ExtensionCustomizer

loaded into Pebbles template engine. Overwrite methods to get hold on provided default-functionality
and modify whatever should be available for the template engine.

The following example removes the , i.e. the ability to parse ForTokenParser {% for %}{{ ... }}{%

 constructs:endfor %}

class ExampleOptOuts extends ExtensionCustomizer {

 public ExampleOptOuts(Extension ext) {
 super(ext);
 }

 @Override
 public List<TokenParser> getTokenParsers() {
 List<TokenParser> tokenParsers = Optional.ofNullable(super.getTokenParsers())
 .map(ArrayList::new).orElseGet(ArrayList::new);

 tokenParsers.removeIf(x -> x instanceof ForTokenParser);
 return tokenParsers;
 }

}

The will be used to wrap any Pebble-extension which is provided by default. It ExtensionCustomizer

can be registered in your setup code to create :PebbleEngine

PebbleEngine engine = new PebbleEngine.Builder().registerExtensionCustomizer(ExampleOptOuts::new).build();

Default implementation of ExtensionCustomizer

The class can be used to disallow some default functionality, DisallowExtensionCustomizerBuilder

make pebble more controllable.

For example of use, see below:

PebbleEngine engine = new PebbleEngine.Builder()
 .registerExtensionCustomizer(new DisallowExtensionCustomizerBuilder()
 .disallowedTokenParserTags(singletonList("flush"))
 .disallowedFunctionKeys(singletonList("max"))
 .disallowedFilterKeys(singletonList("upper"))
 .disallowedTestKeys(singletonList("null"))
 .disallowedBinaryOperatorSymbols(singletonList(">"))
 .disallowedUnaryOperatorSymbols(singletonList("-"))
 .build())
 .build();

Escaping

Escaping

Overview

XSS vulnerabilites are the most common types of security vulnerabilities in web applications and in
order to avoid them you must escape potentially unsafe data before presenting it to the end user. Pebble
provides autoescaping of all such data which is enabled by default. Autoescaping can be turned off, in
which case Pebble provides an filter for more fine-grained manual escaping.escape

Autoescaping

Autoescaping, which is enabled by default, will automatically escape the outcome of expressions
contained within print delimiters, i.e. and :{{ }}

{% set danger = "
" %}
{{ danger }}

{# will output:
 #}

The filter can be used to prevent the autoescaper from escaping a particular expression. It is raw
important that the raw filter is the last operation performed in the expression.

{% set danger = "
" %}
{{ danger | raw }}

{# will output:
 #}

If the raw filter is not the last operation performed within the expression, the expression will be deemed
as possibly unsafe by the autoescaper and will be escaped. For example:

{% set danger = "
" %}
{{ danger | raw | uppercase }}

{# will output:
 #}

Exceptions

There are a few exceptions where expressions are automatically escaped:not

If the expression only contains a string literal, it is assumed to be safe. For example:

{{ '
' }}

{# will output:
 #}

The last operation contained within that expression is a filter or function that explicitly returns safe
output. Such a filter or function would return an instance of instead of a regular String. SafeString

The built-in filters that return safe markup include: , , and . These filters must be date escape raw

the last operation performed within the expression in order for their output to be ignored by the
autoescaper. For example:

{% set danger = "
" %}
{{ danger | uppercase | raw }}

https://en.wikipedia.org/wiki/Cross-site_scripting

{# will output:
 #}

Autoescape Tag

The tag can be used to temporarily disable/re-enable the autoescaper as well as change the autoescape
escaping strategy for a portion of the template.

{{ danger }} {# will be escaped by default #}
{% autoescape false %}
 {{ danger }} {# will not be escaped #}
{% endautoescape %}

{{ danger }} {# will use the "html" escaping strategy #}
{% autoescape "js" %}
 {{ danger }} {# will use the "js" escaping strategy #}
{% endautoescape %}

Disabling Autoescaper

PebbleEngine engine = new PebbleEngine.Builder().autoEscaping(false).build();

Manual Escaping

If autoescaping is disabled you can still use the filter to aid with manual escaping:escape

{% set danger = "
" %}
{{ danger | escape }}

{# will output:
 #}

Strategies

When escaping data it is crucial that you utilize the correct escaping strategy depending on the context of
the data. By default, the autoescaper and the filter assume that you are escaping HTML data. I escape

highly recommend reading the to understand the significance of escaping context.OWASP Cheat Sheet

Pebble provides the following escaping strategies:

html
js
css
url_param

You can use the tag to temporarily change the strategy used by the autoescaper otherwise you autoescape
can change the globally used default strategy:

PebbleEngine engine = new PebbleEngine.Builder().defaultEscapingStrategy("js").build();

The escape filter will also accept a strategy as an argument:

var username ="{{ user.name | escape(strategy="js") }}";

Custom Strategy

You can add a custom escaping strategy by implementing and adding it to the EscapingStrategy

:EscaperExtension

PebbleEngine engine = new PebbleEngine.Builder().addEscapingStrategy("custom", new CustomEscapingStrategy()).build();

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

Extending Pebble

Extending Pebble

Overview

Pebble was designed to be flexible and accomodate the requirements of any project. You can add your
own tags, functions, operators, filters, tests, and global variables. The majority of these are quite trivial to
implement.

Begin by creating a class that implements . For your own convenience, I recommend Extension

extending if you can. After implementing the required methods, register your AbstractExtension

extension with the before compiling any templates:PebbleEngine

PebbleEngine engine = new PebbleEngine.Builder().extension(new CustomExtension()).build();

Filters

To create custom filters, implement the method of your extension which will return a map getFilters()

of filter names and their corresponding implementations. A filter implementation must implement the
 interface. The interface requires two methods to be implemented, Filter Filter getArgumentNames()

and . The method returns a list of Strings that define both the order and apply() getArgumentNames()

names of expected arguments.

The method is the actual filter implementation. Here's the parameters definition.apply

Parameter
name

Description

input the data to be filtered
args the map of arguments the user may have provided

self
An instance of which can be used to retrieve the template name for PebbleTemplate

example

context
An instance of which can be used to retrieve the locale for EvaluationContext

example
lineNumber Useful when throwing exception to provide line number

Because Pebble is dynamically typed, you will have to downcast the arguments to the expected type.
Here is an example of how the filter might be implemented:upper

public class UpperFilter implements Filter {

 @Override
 public List<String> getArgumentNames() {
 return null;
 }

 @Override
 public Object apply(Object input, Map<String, Object> args, PebbleTemplate self, EvaluationContext context, int lineNumber){
 if(input == null){
 return null;
 }
 if (input instanceof String) {
 return ((String) input).toUpperCase(context.getLocale());

 } else {
 return input.toString().toUpperCase(context.getLocale());
 }
 }

}

Tests

Adding custom tests is very similar to custom filters. Implement the method within your getTests()

extension which will return a map of test names and their corresponding implementations. A test
implementation will implement the interface. The interface is exactly like the interface Test Test Filter

except the apply method returns a boolean instead of an arbitrary object of any type.

Here is an example of how the test might be implemented:even

public class EvenTest implements Test {

 @Override
 public List<String> getArgumentNames() {
 return null;
 }

 @Override
 public boolean apply(Object input, Map<String, Object> args, PebbleTemplate self, EvaluationContext context, int lineNumber){
 if (input == null) {
 throw new PebbleException(null, "Can not pass null value to \"even\" test.", lineNumber, self.getName());
 }

 if (input instanceof Integer) {
 return ((Integer) input) % 2 == 0;
 } else {
 return ((Long) input) % 2 == 0;
 }
 }

}

Functions

Adding functions is also very similar to custom filters. First and foremost, it's important to understand the
different intentions behind a function and a filter because it can often be ambiguous which one should be
implemented. A filter is intended to modify existing content where a function is moreso intended to
produce new content.

To add functions, implement the method within your extension which will return a map getFunctions()

of function names and their corresponding implementations. A function implementation will implement
the interface. The interface is very similar to the and interfaces.Function Function Filter Test

Here is an example of how a fictional function might be implemented:fibonacciString

public class FibonnaciStringFunction implements Function {

 @Override
 public List<String> getArgumentNames() {
 List<String> names = new ArrayList<>();
 names.add("length");
 return names;
 }

 @Override
 public Object execute(Map<String, Object> args, PebbleTemplate self, EvaluationContext context, int lineNumber) {

 Integer length = (Integer)args.get("length");
 Integer prev1 = 0;
 Integer prev2 = 1;

 StringBuilder result = new StringBuilder();

 result.append("01");

 for(int i = 2; i < length; i++){
 Integer next = prev1 + prev2;
 result.append(next);
 prev1 = prev2;
 prev2 = next;
 }
 return result.toString();

 }
}

Positional and Named Arguments

For filters, tests, and functions it is required that you implement the method even if it getArgumentNames

returns null. Returning a list of strings will allow the end user to call your filter/test/function using named
arguments. Using the above fictional fibonacci function as an example, a user can invoke it in two
different ways:

{{ fibonacci(10) }}
{{ fibonacci(length=10) }}

If the end user excludes the names and only uses positional arguments, the argument values will still end
up be mapped to the proper names when it's time to invoke the function's execute method. Your function
implementation doesn't have to worry whether the user used positional or named arguments. It is
important though that if the filter/function/test expects more than one argument, then the developer must
communicate to the user the expected order of arguments in the chance that the user wants to invoke it
without using names.

Some functions such as the built in and functions accept an unlimited amount of arguments. For min max

this to happen, your function must not accept any named arguments (i.e. your method getArgumentNames

will return null or empty) and your `execute`` method will simply iterate over the values of the user
provided argument map while ignoring the keys of that map (Pebble will use arbitrary keys if there are no
names to map to).

Global Variables

Adding global variables, which are variables that are accessbile to all templates, is very trivial. In your
custom extension, implement the method which returns a . getGlobalVariables() Map<String,Object>

The contents of this map will be merged into the context you provide to each template at the time of
rendering.

Operators

Operators are more complex to implement than filters or tests. To add custom operators, implement the
 or the method in your extension, or both. These methods getBinaryOperators() getUnaryOperators()

return a list of or objects, respectively.BinaryOperator UnaryOperator

Binary operators require the following information:

Precedence: an integer relative to other operators which defines the order of operations.

Symbol: a String representing the actual operator. This is typically a single character but doesn't
have to be.
Expression Class: A class that extends . This class will perform the actual BinaryExpression

operator implementation.
Associativity: Either left or right depending on how the operator is used.

A unary operator is much the same except it's expression class must extend and there UnaryExpression

is no associativity.

The precedence values for existing core operators are as followed:

or: 10
and: 15
is: 20
is not: 20
==: 30
!=: 30
>: 30
<: 30
>=: 30
<=: 30
+: 40
-: 40
not: 50 (Unary)
*: 60
/: 60
%: 60
|: 100
+: 500 (Unary)
-: 500 (Unary)

The following is an example of how the addition operator () might have been implemented:+

public class AdditionOperator implements BinaryOperator {

 public int getPrecedence(){
 return 30;
 }

 public String getSymbol(){
 return "+";
 }

 public BinaryExpression<?> createInstance() {
 return new AddExpression();
 }

 public BinaryOperatorType getType() {
 return BinaryOperatorType.NORMAL;
 }

 public Associativity getAssociativity(){
 return Associativity.LEFT;
 }

}

Alongside each operator class you will also need to implement a corresponding class BinaryExpression

which actually implements the operator. The above example references a fictional AdditionExpression

class which might look like the following:

public class AdditionExpression extends BinaryExpression<Object> {

 @Override
 public Object evaluate(PebbleTemplateImpl self, EvaluationContext context){
 Integer left = (Integer)getLeftExpression().evaluate(self, context);
 Integer right = (Integer)getRightExpression().evaluate(self, context);

 return left + right;
 }

}

In the above example you will notice that children of BinaryExpression have access to two other
expressions, , and ; these are the operands of your operator. Please leftExpression rightExpression

note that in the above example both operands are casted to Integers but in reality you can't always make
that assumption; the true addition expression is much more complex to handle different types of operands
(Integers, Longs, Doubles, etc).

Tags

Creating new tags is one of the most powerful abilities of Pebble. Your extension should start by
implementing the method. A is responsible for converting all getTokenParsers() TokenParser

necessary tokens to appropriate . A token is a significant and irreducible group of RenderableNodes

characters found in a template (such as an operator, whitespace, variable name, delimiter, etc) and a
 is a Pebble class that is responsible for generating output.RenderableNode

Let us look at an example of a :TokenParser

public class SetTokenParser implements TokenParser {

 public String getTag(){
 return "set";
 }

 @Override
 public RenderableNode parse(Token token, Parser parser) {
 TokenStream stream = parser.getStream();
 int lineNumber = token.getLineNumber();

 // skip the "set" token
 stream.next();

 // use the built in expression parser to parse the variable name
 String name = parser.getExpressionParser().parseNewVariableName();

 stream.expect(Token.Type.PUNCTUATION, "=");

 // use the built in expression parser to parse the variable value
 Expression<?> value = parser.getExpressionParser().parseExpression();

 // expect to see "%}"
 stream.expect(Token.Type.EXECUTE_END);

 // NodeSet is composed of a name and a value
 return new SetNode(lineNumber, name, value);
 }

}

The method must return the name of the tag. Pebble's main parser will use this name to getTag()

determine when to delegate responsibility to your custom . This example is parsing the TokenParser set

tag.

The parse method is invoked whenever the primary parser encounters a set token. This method should
return one instance which when rendered during the template evaluation, will write RenderableNode

output to the provided Writer object. If the contains children nodes, it should invoke the RenderableNode

render method of those nodes as well.

The best way to learn all the details of parsing is to look at some of the tools used, as well as some
examples. Here is a list of classes I suggest reading:

TokenParser

Parser

SetTokenParser

ForTokenParser

IfNode

SetNode

Attribute resolver (v3 only)

To create a new attribute resolver, implement the method of your extension getAttributeResolver()

which will return a list of attribute resolvers to run. A attribute resolver implementation must implement
the interface. The interface requires one method to be AttributeResolver AttributeResolver

implemented, .resolve()

The custom attribute resolver will be executed before all default pebble attribute resolvers. It replaces the
 interfaceDynamicAttributeProvider

public class DefaultAttributeResolver implements AttributeResolver {

 @Override
 public ResolvedAttribute resolve(Object instance,
 Object attributeNameValue,
 Object[] argumentValues,
 boolean isStrictVariables,
 String filename,
 int lineNumber) {
 if (instance instanceof CustomObject) {
 return "customValue";
 }
 return null;
 }
}

High Performance Techniques

High Performance

Concurrency

First and foremost, a object, once compiled, is completely thread safe. As long as the PebbleTemplate

data backing the template is also thread safe, you can render that single template instance using multiple
threads at once.

The actual rendering of a template will typically occur in a sequential manner, from top to bottom. If,
however, you provide an to the and make use of the tag, you ExecutorService PebbleEngine parallel
can have multiple threads render different sections of your template at one time. This is especially useful
if one section of your template is costly and will otherwise block the rendering of the rest of the template.

Streaming

The use of the tag can be used to stream the rendered output as it's being rendered. This can flush
significantly improve latency.

Performance Pitfalls

It is typically okay for a block to use the tag unless the contents of that block is being flush

rendered using the function. Typically the flush tag will flush to the that you block Writer

provided but the block function internally uses it's own and therefore flushing will StringWriter

do no good.

autoescape

autoescape

The tag can be used to temporarily disable/re-enable the autoescaper as well as change the autoescape

escaping strategy for a portion of the template.

{{ danger }} {# will be escaped by default #}
{% autoescape false %}
 {{ danger }} {# will not be escaped #}
{% endautoescape %}

{{ danger }} {# will use the "html" escaping strategy #}
{% autoescape "js" %}
 {{ danger }} {# will use the "js" escaping strategy #}
{% endautoescape %}

Please read the for more information about escaping.escaping guide

block

block

The tag performs two functions. If used in a parent template, it will designate a section as being block

allowed to be overriden by a child template. If used in a child template, it will override the content
originally declared in the parent template. See the tag for a more detailed explanation on how to extends
implement template inheritance.

The contents of a block will only be used if a child template does not override it. It is often useful to
define empty blocks as placeholders for content to be provided by a child template.

The tag is immediately followed by the name of the block. This name will be the same name the block

child template uses to override it. The tag can optionally contain the block's name for endblock

readability.

In the following example we create a block with the name 'header':

{% block header %}
 <h1> Introduction </h1>
{% endblock header %}

A child template should not have any content outside of blocks. A child template is only used to override
blocks of a parent template.

cache

cache

Cache the rendering portion of a page. Cache name can be an expression or a static string. It uses the
cache name and the locale as a key in the cache.

In the following example we create a cache with the name 'menu':

{% cache 'menu' %}
 {% for item in items %}
 {{ item.text }}

 {% endfor %}
{% endcache %}

Cache implementation can be overriden with the PebbleEngine Builder.

 return new PebbleEngine.Builder()
 .loader(this.templateLoader())
 .tagCache(CacheBuilder.newBuilder().maximumSize(200).build())
 .build();

embed

embed

The tag allows you to insert the rendered output of another template directly into the current embed

template, while overriding some of its blocks. It effectively combines the behavior of with that of include
 for creating reusable, yet flexible, template fragments, or for composing micro-layouts.extends

For example, imagine building a template as a reusable component in your layout. All cards card.peb

should have the same markup, but the content can change drastically throughout your site. card.peb

might then look like:

// card.peb
<div class="card">
 {% block cardContent %}
 {% endblock %}
</div>

Now, you can include that template elsewhere in your layout, and override the block to cardContent

"inject" rich content into that template at the call-side. For example, you may want to display a grid of
your store's most popular products as cards, with the last card linking to the full catalog. Embedding

 and overriding the block ensures that the markup for both types of cards are card.peb cardContent

always the same, even though what's displayed on each card is quite different.

// layout.peb

{% for product in popularProducts %}
 {% embed 'card.peb' %}
 {% block cardContent %}
 <h1>{{ product.name }}</h1>
 <p>{{ product.description }}</p>
 {% endblock %}
 {% endembed %}
{% endfor %}

{% embed 'card.peb' %}
 {% block cardContent %}
 See all 100+ products
 {% endblock %}
{% endembed %}

Embeds can be used multiple times in the same template, and may also be used in a template that itself
extends another. Each template will then maintain its own block hierarchy. In other words, block
overridden within the body of the tag will not accidentally override those defined in the main embed

template, and likewise blocks defined in the main template or its parent templates will not get mixed with
those in the embedded template or its parent templates.

// main.peb
{% extends 'base.peb' %}

{% block mainContent %}
 {{ parent() }} {# renders mainContent block from base.peb #}
 {{ block('footer') }} {# renders footer block from base.peb, the global page footer #}

 {% embed 'card.peb' %}
 {% block mainContent %}
 {{ parent() }} {# renders mainContent block from card.peb #}
 {{ block('footer') }} {# renders footer block from card.peb, the card footer (not the global page footer) #}
 {% endblock %}

 {% endembed %}
{% endblock %}

Scope

Embedded templates will have access to the same variables that the current template does.

Top Content
{% embed "advertisement" %}{% endembed %}
Bottom Content
{% embed "footer" %}{% endembed %}

You can add additional variables to the context of the embedded template by passing a map after the with
keyword. The embedded template will have access to the same variables that the current template does
plus the additional ones defined in the map passed after the keyword:with

{% embed "advertisement" with {"foo":"bar"} %}
 {% block title %}
 Ad with title
 {% endblock %}
 {% block content %}
 Ad with title
 {% endblock %}
{% endembed %}

Dynamic embed

The tag will accept an expression to determine the template to embed at runtime. For example:embed

{% embed admin ? 'adminFooter' : 'defaultFooter' %}
{% endembed %}

extends

extends

The tag is used to declare a parent template. It should be the very first tag used in a child extends

template and a child template can only extend up to one parent template.

The best way to understand template inheritance is to study an example. Let us look at a parent template
called "base":

<html>
 <head>
 <title>{% block title %} {% endblock %}</title>
 </head>
 <body>
 <div id="content">
 {% block content %}
 Default content goes here.
 {% endblock %}
 </div>

 <div id="footer">
 {% block footer %}
 Default footer content
 {% endblock %}
 </div>
 </body>
</html>

And now let's look at a child template called "home" which extends "base":

{% extends "base" %}

{% block title %} Home {% endblock %}

{% block content %}
 Home page content.
{% endblock %}

And finally let's look at the resulting output after evaluating "home":

<html>
 <head>
 <title> Home </title>
 </head>
 <body>
 <div id="content">
 Home page content will override the default content.
 </div>

 <div id="footer">
 Default footer content
 </div>
 </body>
</html>

To summarize, parent templates define blocks and child templates will override the contents of those
blocks. If a child template does not override the content of a particular block, the content provided by the
parent template will be used.

There is no limit to how long of an inheritance chain that you can create; i.e. a child template can itself
have a child template. A lot of potential comes from this fact because you can create a hierarchy of
templates to minimize how much content you have to write on the lower levels.

Dynamic Inheritance

The tag will accept an expression to determine the parent template at runtime. For example:extends

{% extends ajax ? 'ajax' : 'base' %}

filter

filter

The tag allows you to apply a filter to a large chunk of template.filter

{% filter upper %}
 hello
{% endfilter %}}

{# output: 'HELLO' #}

Multiple filters can be chained together.

{% filter upper | escape %}
 hello

{% endfilter %}}

{# output: 'HELLO
' #}

flush

flush

The tag allows you to flush all currently rendered output to the provided .flush Writer

{{ headerText }}
{% flush %}
{{ content }}

for

for

The tag is used to iterate through primitive arrays or anything that implements the for java.lang.

 interface, as well as maps.Iterable

{% for user in users %}
 {{ user.name }} lives in {{ user.city }}.
{% endfor %}

While inside of the loop, Pebble provides a couple of special variables to help you out:

loop.index - a zero-based index that increments with every iteration.
loop.length - the size of the object we are iterating over.
loop.first - True if first iteration
loop.last - True if last iteration
loop.revindex - The number of iterations from the end of the loop

{% for user in users %}
 {{ loop.index }} - {{ user.id }}
{% endfor %}

The tag also provides a convenient way to check if the iterable object is empty with the included for else

tag.

{% for user in users %}
 {{ loop.index }} - {{ user.id }}
{% else %}
 There are no users to display.
{% endfor %}

Iterating over maps can be done like so:

{% for entry in map %}
 {{ entry.key }} - {{ entry.value }}
{% endfor %}

from

from

The from tag imports names into the current namespace. The tag is documented in detail in the macro
documentation for the tag.import

if

if

The tag allows you to designate a chunk of content as conditional depending on the result of an if

expression

{% if users is empty %}
 There are no users.
{% elseif users|length == 1 %}
 There is only one user.
{% else %}
 There are many users.
{% endif %}

The expression used in the statement often makes use of the operator.if is

Supported conditions

If tag currently supports the following expression

Value Boolean expression
boolean boolean value
Empty string false
Non empty string true
numeric zero false
numeric different than zero true

import

import

The tag allows you to use defined in another template.import macros

Assuming that a macro named exists in a template called you can import it like so:input form_util

{% import "form_util" %}

{{ input("text", "name", "Mitchell") }}

The easiest and most flexible is importing the whole module into a variable. That way you can access the
attributes:

{% import 'forms.html' as forms %}

<dl>
 <dt>Username</dt>
 <dd>{{ forms.input('username') }}</dd>
 <dt>Password</dt>
 <dd>{{ forms.input('password', null, 'password') }}</dd>
</dl>
<p>{{ forms.textarea('comment') }}</p>

Alternatively you can import names from the template into the current namespace:

{% from 'forms.html' import input as input_field, textarea %}

<dl>
 <dt>Username</dt>
 <dd>{{ input_field('username') }}</dd>
 <dt>Password</dt>
 <dd>{{ input_field('password', '', 'password') }}</dd>
</dl>
<p>{{ textarea('comment') }}</p>

Dynamic Import

The tag will accept an expression to determine the template to import at runtime. For example:import

{% import modern ? 'ajax_form_util' : 'simple_form_util' %}

{{ input("text", "name", "Mitchell") }}

include

include

The tag allows you to insert the rendered output of another template directly into the current include

template. The included template will have access to the same variables that the current template does.

Top Content
{% include "advertisement" %}
Bottom Content
{% include "footer" %}

You can add additional variables to the context of the included template by passing a map after the with

keyword. The included template will have access to the same variables that the current template does
plus the additional ones defined in the map passed after the keyword:with

{% include "advertisement" with {"foo":"bar"} %}

Dynamic Include

The tag will accept an expression to determine the template to include at runtime. For example:include

{% include admin ? 'adminFooter' : 'defaultFooter' %}

macro

macro

The tag allows you to create a chunk of reusable and dynamic content. The macro can be called macro

multiple times in the current template or even from another template with the help of the tag.import

It doesn't matter where in the current template you define a macro, i.e. whether it's before or after you
call it. Here is an example of how to define a macro:

{% macro input(type="text", name, value) %}
 <input type="{{ type }}" name="{{ name }}" value="{{ value }}" />
{% endmacro %}

And now the macro can be called numerous times throughout the template, like so:

{{ input(name="country") }}
{# will output: <input type="text" name="country" value="" /> #}

If the macro resides in another template, use the tag first.import

{% import "form_util" %}
{{ input("text", "country", "Canada") }}

A macro does not have access to the same variables that the rest of the template has access to. A macro
can only work with the variables provided as arguments.

Access to the global context

You can pass the whole context as an argument by using the special variable if you need to _context

access variables outside of the macro scope:

{% set foo = 'bar' %}

{{ test(_context) }}
{% macro test(_context) %}
 {{ _context.foo }}
{% endmacro %}

{# will output: bar #}

parallel

parallel

The tag allows you to designate a chunk of content to be rendered using a new thread. This tag parallel

is only available if you provide an to the main .ExecutorService PebbleEngine

{{ upperContent }}

{% parallel %}
 {{ calculation.slowCalculation }}
{% endparallel %}

{{ lowerContent }}

In the above example, the slow calculation will not block the from being evaluated lowerContent

concurrently.

See the for more tips on how to improve performance.high performance guide

set

set

The tag allows you to define a variable in the current context, whether it currently exists or not.set

{% set header = "Test Page" %}

{{ header }}

verbatim

verbatim

The tag allows you to write a block of Pebble syntax that won't be parsed.verbatim

{% verbatim %}
 {% for user in users %}
 {{ user.name }}
 {% endfor %}
{% endverbatim %}

Inline Verbatim Text

For inline verbatim text, a string literal can be used. For example, if you need to include in the output {{
of a template, you can use in string literal in the Pebble template{{ "{{" }}

This would be useful if you are using Pebble to generate Angular HTML component template files:

<td>{{ "{{" }}school.name{{ "}}" }}</td>

would produce the following template output:

<td>{{school.name}}</td>

abbreviate

abbreviate

The filter will abbreviate a string using an ellipsis. It takes one argument which is the max abbreviate

width of the desired output including the length of the ellipsis.

{{ "this is a long sentence." | abbreviate(7) }}

The above example will output the following:

this...

Arguments

length

abs

abs

The filter is used to obtain the absolute value.abs

{{ -7 | abs }}

{# output: 7 #}

base64decode

base64decode

The filter takes the given input, Base64-decodes it, if possible, and returns the byte array base64decode

converted to UTF-8 String. Applying the filter on an incorrect base64-encoded string will throw an
exception.

{{ "dGVzdA==" | base64decode }}

The above example will output the following:

test

base64encode

base64encode

The filter takes the given input, converts it to an UTF-8 String () and Base64-base64encode .toString()

encodes it.

{{ "test" | base64encode }}

The above example will output the following:

dGVzdA==

capitalize

capitalize

The filter will capitalize the first letter of the string.capitalize

{{ "article title" | capitalize }}

The above example will output the following:

Article title

See also: title

date

date

The filter formats a date in a variety of formats. It can handle old-school , Java 8 date java.util.Date

 constructs like and timestamps in milliseconds from the epoch. The filter java.time OffsetDateTime

will construct a or using the java.text.SimpleDateFormat java.time.format.DateTimeFormatter

provided pattern and then use this newly created format to format the provided date object. If you don't
provide a pattern, either or will be used.DateTimeFormatter.ISO_DATE_TIME yyyy-MM-dd'T'HH:mm:ssZ

{{ user.birthday | date("yyyy-MM-dd") }}

An alternative way to use this filter is to use it on a string but then provide two arguments: the first is the
desired pattern for the output, and the second is the existing format used to parse the input string into a

 object.java.util.Date

{{ "July 24, 2001" | date("yyyy-MM-dd", existingFormat="MMMM dd, yyyy") }}

The above example will output the following:

2001-07-24

Time zones

If the provided date has time zone info (e.g.) then it will be used. If the provided date OffsetDateTime

has no time zone info, by default the system time zone will be used. If you need to use a specific time
zone then you can pass in a parameter any string that's understood by / :timeZone ZoneId ZoneInfo

{# the timeZone parameter will be ignored #}
{{ someOffsetDateTime | date("yyyy-MM-dd'T'HH:mm:ssX", timeZone="UTC") }}
{# the provided time zone will override the system default #}
{{ someInstant | date("yyyy-MM-dd'T'HH:mm:ssX", timeZone="Pacific/Funafuti") }}

Arguments

format
existingFormat
timeZone

default

default

The filter will render a default value if and only if the object being filtered is empty. A variable default

is empty if it is null, an empty string, an empty collection, or an empty map.

{{ user.phoneNumber | default("No phone number") }}

In the following example, if , , or are null the output will become an empty string which is a foo bar baz

perfect use case for the default filter:

{{ foo.bar.baz | default("No baz") }}

Note that the default filter will suppress any exceptions that will usually AttributeNotFoundException

be thrown when is set to .strictVariables true

Arguments

default

escape

escape

The filter will turn special characters into safe character references in order to avoid XSS escape

vulnerabilities. This filter will typically only need to be used if you've turned off autoescaping.

{{ "<div>" | escape }}
{# output: <div> #}

Please read the for more information about escaping.escaping guide

Arguments

strategy

first

first

The filter will return the first item of a collection, or the first letter of a string.first

{{ users | first }}
{# will output the first item in the collection named 'users' #}

{{ 'Mitch' | first }}
{# will output 'M' #}

join

join

The filter will concatenate all items of a collection into a string. An optional argument can be given join

to be used as the separator between items.

{#
 List<String> names = new ArrayList<>();
 names.add("Alex");
 names.add("Joe");
 names.add("Bob");
#}
{{ names | join(',') }}
{# will output: Alex,Joe,Bob #}

Arguments

separator

last

last

The filter will return the last item of a collection, or the last letter of a string.last

{{ users | last }}
{# will output the last item in the collection named 'users' #}

{{ 'Mitch' | last }}
{# will output 'h' #}

length

length

The filter returns the number of items of collection, map or the length of a string:length

{% if users|length > 10 %}
 ...
{% endif %}

lower

lower

The filter makes an entire string lower case.lower

{{ "THIS IS A LOUD SENTENCE" | lower }}

The above example will output the following:

this is a loud sentence

numberformat

numberformat

The filter is used to format a decimal number. Behind the scenes it uses numberformat java.text.

.DecimalFormat

{{ 3.141592653 | numberformat("#.##") }}

The above example will output the following:

3.14

Arguments

format

raw

raw

The filter prevents the output of an expression from being escaped by the autoescaper. The filter raw raw

must be the very last operation performed within the expression otherwise the autoescaper will deem the
expression as potentially unsafe and escape it regardless.

{% set danger = "<div>" %}
{{ danger | upper | raw }}
{# ouptut: <DIV> #}

If the filter is not the last operation performed then the expression will be escaped:raw

{% set danger = "<div>" %}
{{ danger | raw | upper }}
{# output: <DIV> #}

Please read the for more information about escaping.escaping guide

replace

replace

The 'replace' filter formats a given string by replacing the placeholders (placeholders are free-form):

{{ "I like %this% and %that%." | replace({'%this%': foo, '%that%': "bar"}) }}

Arguments

placeholders to replace

reverse

reverse

The 'reverse' filter reverses a List:

{% for user in users | reverse %} {{ user }} {% endfor %}

rsort

rsort

The filter will sort a list in reversed order. The items of the list must implement .rsort Comparable

{% for user in users | rsort %}
 {{ user.name }}
{% endfor %}

sha256

sha256

The filter returns the SHA-256 hash of the given UTF-8 String.sha256

{{ "test" | sha256 }}

The above example will output the following:

9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08

slice

slice

The filter returns a portion of a list, array, or string.slice

{{ ['apple', 'peach', 'pear', 'banana'] | slice(1,3) }}
{# results in: [peach, pear] #}

{{ 'Mitchell' | slice(1,3) }}
{# results in: 'it' #}

Arguments

fromIndex: 0-based and inclusive
toIndex: 0-based and exclusive

sort

sort

The filter will sort a list. The items of the list must implement .sort Comparable

{% for user in users | sort %}
 {{ user.name }}
{% endfor %}

split

split

The filter splits a string by the given delimiter and returns a list of strings.split

{% set foo = "one,two,three" | split(',') %}
{# foo contains ['one', 'two', 'three'] #}

You can also pass a limit argument:

If is positive, then the pattern will be applied at most n - 1 times, the array's length will be limit

no greater than n, and the array's last entry will contain all input beyond the last matched delimiter;
If is negative, then the pattern will be applied as many times as possible and the array can limit

have any length;
If is zero, then the pattern will be applied as many times as possible, the array can have any limit

length, and trailing empty strings will be discarded;

{% set foo = "one,two,three,four,five" | split(',', 3) %}
{# foo contains ['one', 'two', 'three,four,five'] #}

Arguments

delimiter: The delimiter
limit: The limit argument

title

title

The filter will capitalize the first letter of each word.title

{{ "article title" | title }}

The above example will output the following:

Article Title

See also: capitalize

trim

trim

The filter is used to trim whitespace off the beginning and end of a string.trim

{{ " This text has too much whitespace. " | trim }}

The above example will output the following:

This text has too much whitespace.

upper

upper

The filter makes an entire string upper case.upper

{{ "this is a quiet sentence." | upper }}

The above example will output the following:

THIS IS A QUIET SENTENCE.

urlencode

urlencode

The translates a string into format using the "UTF-8" urlencod application/x-www-form-urlencoded

encoding scheme.

{{ "The string ü@foo-bar" | urlencode }}

The above example will output the following:

The+string+%C3%BC%40foo-bar

block

block

The function is used to render the contents of a block more than once. It is not to be confused with block

the block which is used to declare blocks.tag

The following example will render the contents of the "post" block twice; once where it was declared and
again using the function:block

{% block "post" %} content {% endblock %}

{{ block("post") }}

The above example will output the following:

content

content

Performance Warning

The function will impair the use of the tag used within the block being rendered. It is block flush
typically okay for a block to use the tag which will flush the already-rendered content to the user-flush

provided but the block function will internally use it's own and therefore flushing Writer StringWriter

inside the block will no longer do any good (nor will it do harm).

i18n

i18n

The function is used to retrieve messages from a locale-specific . Every i18n ResourceBundle

 is assigned a default locale from the . At the point of evaluation, this PebbleTemplate PebbleEngine

locale can be changed with an argument to the method of the individual template.evaluate(...)

The function wraps around . The i18n ResourceBundle.getBundle(name, locale).getObject(key)

first argument to the function is the name of the bundle and the second argument is the key within i18n

the bundle.

{{ i18n("messages","greeting") }}

The above example assumes you have on your classpath and that that file messages.properties

contains a key by the name of . If the locale of that template was for example, it would greeting es_US

look for a file instead.message_es_US.properties

Going a little further, you can use variables within your message and pass a list of params to this function
which will replace your variables using :MessageFormat

{# greeting.someone=Hello, {0} #}
{{ i18n("messages","greeting", "Jacob") }}

{# output: Hello, Jacob #}

Arguments

bundle
key
params

max

max

The function will return the largest of it's numerical arguments.max

{{ max(user.age, 80) }}

min

min

The function will return the smallest of it's numerical arguments.min

{{ min(user.age, 80) }}

parent

parent

The function is used inside of a block to render the content that the parent template would have parent

rendered inside of the block had the current template not overriden it. It is similar to Java's super

keyword.

Let's assume you have a template, "parent.peb" that looks something like this:

{% block "content" %}
 parent contents
{% endblock %}

And then you have another template, "child.peb" that extends "parent.peb":

{% extends "parent.peb" %}

{% block "content" %}
 child contents
 {{ parent() }}
{% endblock %}

The output will look something like the following:

parent contents
child contents

range

range

The function will return a list containing an arithmetic progression of numbers:range

{% for i in range(0, 3) %}
 {{ i }},
{% endfor %}

{# outputs 0, 1, 2, 3, #}

When step is given (as the third parameter), it specifies the increment (or decrement):

{% for i in range(0, 6, 2) %}
 {{ i }},
{% endfor %}

{# outputs 0, 2, 4, 6, #}

Pebble built-in .. operator is just a shortcut for the range function with a step of 1+

{% for i in 0..3 %}
 {{ i }},
{% endfor %}

{# outputs 0, 1, 2, 3, #}

empty

empty

The test checks if a variable is empty. A variable is empty if it is null, an empty string, an empty empty

collection, or an empty map.

{% if user.email is empty %}
 ...
{% endif %}

even

even

The test checks if an integer is even.even

{% if 2 is even %}
 ...
{% endif %}

map

map

The test checks if a variable is an instance of a map.map

{% if {"apple":"red", "banana":"yellow"} is map %}
 ...
{% endif %}

null

null

The test checks if a variable is null.null

{% if user.email is null %}
 ...
{% endif %}

odd

odd

The test checks if an integer is odd.odd

{% if 3 is odd %}
 ...
{% endif %}

iterable

iterable

The test checks if a variable implements .iterable java.lang.Iterable

{% if users is iterable %}
 {% for user in users %}
 ...
 {% endfor %}
{% endif %}

comparisons

Comparisons
Pebble provides the following comparison operators: , , , , , . All of them except for are == != < > <= >= ==

equivalent to their Java counterparts. The operator uses behind == java.util.Objects.equals(a, b)

the scenes to perform null safe value comparisons.

equals is an alias for ==

{% if user.name equals "Mitchell" %}
 ...
{% endif %}

contains

contains

The operator can be used to determine if a collection, map, or array contains a particular item.contains

{% if ["apple", "pear", "banana"] contains "apple" %}
 ...
{% endif %}

When using maps, the contains operator checks for an existing key.

{% if {"apple":"red", "banana":"yellow"} contains "banana" %}
 ...
{% endif %}

The operator can be used to look for multiple items at once:

{% if ["apple", "pear", "banana", "peach"] contains ["apple", "peach"] %}
 ...
{% endif %}

is

is

The operator will apply a test to a variable which will return a boolean.is

{% if 2 is even %}
 ...
{% endif %}

The result can be negated using the operator.not

logic

Logic
The operator and the operator are available to join boolean expressions.and or

{% if 2 is even and 3 is odd %}
 ...
{% endif %}

The operator is available to negate a boolean expression.not

{% if 3 is not even %}
 ...
{% endif %}

Parenthesis can be used to group expressions to ensure a desired precedence.

{% if (3 is not even) and (2 is odd or 3 is even) %}
 ...
{% endif %}

math

Math
All the regular math operators are available for use. Order of operations applies.

{{ 2 + 2 / (10 % 3) * (8 - 1) }}

The result can be negated using the operator.not

others

Other Operators
The operator is used to apply a filter to a variable.|

{{ user.name | capitalize }}

Pebble supports the use of the conditional operator (often named the ternary operator).

{{ foo == null ? bar : baz }}

